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A detailed description of radiative interactions in laminar compressible boundary 
layers for moderate Mach numbers is presented by way of asymptotic analysis and 
supporting solutions. The radiation field is described by the differential approximation. 
While the asymptotic analysis is valid for large N (the ratio of photon mean free path 
to molecular mean free path) and arbitrary Boltzmann number, Bo (the ratio of 
convective heat flux to  radiation heat flux), the solutions are obtained for Bo < 1,  
the case of strong radiative interactions. 

The asymptotic analysis shows the existence of an optically thin boundary layer 
for large N and all Bo. For Bo < 1,  two outer regions are observed - one optically 
thin (at short distances from the leadiilg edge) and the other optically thick (at large 
distances from the leading edge). An interesting feature not pointed out in the previous 
literature is the existence of a wall layer a t  large distances from the leading edge 
where convective heat flux can be ignored to  the leading order of approximation. 
The radiation field in all cases can be very well approximated by a one-dimensional 
description. 

The solutions have been constructed using the ideas of matched asymptotic expan- 
sions by approximate analytical procedures and numerical methods. It is shown that, 
to  the leading order of approximation, the radiation slip method yields exactly the 
same result as the more complicated matching procedure. Both the cases of linear and 
nonlinear radiation have been considered, the former being of interest in developing 
approximate methods which are subsequently generalized to  handle the nonlinear 
problem. Detailed results are presented for both cases. 

1. Introduction 
This paper considers the problem of a laminar, compressible, viscous, heat-conduct- 

ing, radiating, grey gas flow over a semi-infinite plate a t  zero incidence and uniform 
temperature. The Mach number of the flow is assumed to be sufficiently hrge so that 
viscous dissipation is important, but not large enough to  change the thermo-physical 
properties by orders of magnitude. The main aim is t o  understand the interaction 
among the different modes of energy transport in this class of flow. Asymptotic 
analysis of the problem is carried out and a few solutions in support of the analysis 
are given. 

Intuitively speaking, the long range interaction of radiation tends to  flatten tem- 
perature profiles. Computations carried out on different systems such as a plane 
parallel layer with radiation, with radiation and conduction, and optically thick 
boundary layers (Usiskin & Sparrow 1960; Lick 1963; Sparrow & Cess 1966) bear 
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abundant testimony to this intuition. This suggests that the thickness of the thermal 
boundary layer increases considerably in the presence of radiation. Cess (1964) was 
the first to recognize the singular perturbation nature of the radiative interactions in 
boundary layers. His arguments were somewhat heuristic and were confined to an 
incompressible fluid. I n  spite of these arguments, Viskanta (1966) asserted that the 
boundary-layer approximations would be valid only for optically thick fluids. 

A second controversial question concerns the use of a one-dimensional formulation 
for describing the radiation field. While Viskanta feels that one-dimensionality is in- 
admissible, Cess (1966) and Pai & Tsao (1966) present criteria (they do not agree with 
each other) under which one-dimensionality could be justified. These conflicting 
views cannot be explained by any analysis made so far. The framework of analysis 
we adopted was originally suggested by Kruskal (1963) and later used by Solan & 
Cohen (1967a, b )  for the radiating Rayleigh problem. However, there are significant 
differences between the unsteady one-dimensional (spacewise) Rayleigh problem and 
the steady two-dimensional nature of the present problem which warrant further 
study. Moreover, Solan & Cohen interpreted the asymptotic analysis in a rather 
restrictive manner, totally disregarding the merits of describing the flow field using 
non-optimal scales (for definition of optimal scales see $2). 

We use the differential approximation for describing the radiation field and it is 
shown that this does not affect the generality of the asymptotic analysis in any way. 
The asymptotic description is presented in terms of two parameters - N ,  the ratio 
of photon mean free path and molecular mean free path, and the Boltzmann number, 
Bo, the ratio of convective heat flux and the radiative heat flux. For N large, the vis- 
cous, heat-conducting boundary layer is always thin. However, the temperature non- 
uniformity penetra.tes deep into the inviscid region and the details of energy transfer 
in this region are determined by Bo. 

The non-uniform behaviour of the temperature field demands asymptotic matching 
of solutions in different regions. If we restrict our attention to leading-order approxi- 
mations, this matching can be effectively circumvented by the use of slip boundary 
conditions a t  the wall. The nonlinear energy equation is solved by an approximate 
procedure, which in the first instance is justified for the linear problem. The approxi- 
mate procedure is also validated by obtaining a numerical solution to the problem. 

2. Asymptotic analysis 
2.1. Governing equations in dimensionless form 

The governing equations for the problem are the usual Navier-Stokes equations for 
a compressible fluid with radiation flux terms added to the energy equation [see, for 
example, Curle (1962) for these equations]. As is customary in this class of problem, 
we ignore the contributions of radiation pressure in the momentum equations and 
the radiation energy density in the energy equation. 

We use the differentia,l approximation for the exact integro-differential equation 
of transfer to specify the radiant heat flux. The derivation of the approximation is 
discussed in detail by Vincenti & Kruger (1 965). For the purposes of the present work, 
it is sufficient to make two comments on the validity of the approximation. The 
approximation reproduces the behaviour of the exact equation of transfer in the 
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limits of small and large optical thickness. There appears to be some doubt about the 
applicability of the approximation to multi-dimensional problems (for a summary of 
arguments in this connexion, see Sparrow & Cess 1966), though it has been applied 
to such problems (Cheng 1964). During the course of the asymptotic analysis, we will 
show that the radiation field is truly one-dimensional a t  least to the leading order. 
Hence, the use of the differential approximation will not in any way interfere with 
the main lines of thought presented in this paper. 

We assume that the gas is grey and as such all radiative quantities are integrated 
quantities. The absorption coefficient has been treated as a constant which is a suitably 
chosen average. I n  this part of the work, since the Mach number is not very large, 
we do not expect variations of temperature across the boundary layer by orders of 
magnitude. Hence the use of the constant absorption coefficient will neither alter the 
arguments of the asymptotic analysis nor influence the methodology adopted to 
construct solutions to the problem. The companion problem of high Mach number 
taking into account the variation of absorption Coefficient with temperature is con- 
sidered in a separate work (Venkateshan & Krishna Prasad 1978). 

The first step in non-dimensionalizing the governing equations is to determine the 
characteristic measures of the problem. With Mach number asymptotically inactive, 
the characteristic measures for the thermodynamic and thermophysical properties 
will be taken as their values in the free stream. The streamwise velocity will also be 
normalized with respect to the velocity of the oncoming free stream. 

However, the above procedure is inapplicable for the length variables (both of 
which go from 0 to CO) and the normal velocity (which vanishes at the wall as well as 
in the free stream). For the length measures, we may use an internal length scale. 
Two such length scales are available for the present problem - the molecular mean 
free path and the photon mean free path (defined as the reciprocal of the absorption 
coefficient). Since our primary interest in this study lies in radiative interactions, we 
choose to measure lengths in terms of the photon mean free path. This choice by itself 
will not ensure that the normalized variables will be of order unity in the domain of 
interest. To achieve this we introduce two non-dimensional scaling parameters in the 
definitions of these normalized variables. A similar strategy is adopted while nor- 
malizing the normal component of velocity with respect to the free-stream velocity. 
One of the purposes of the asymptotic analysis could be thought of as the determina- 
tion of these scaling parameters. 

Non-dimensional variables (without primes), all of order unity, are introduced 
through the following definitions : 

(1)  
p' = pp;, T' = TT',, h' = hh',, 

P' = PP',, ji' = ,iipL, k' = kk',, a' = 01a,, f j  
XI = wqh.x 
UI = uu',, 

P' = PPL, 

9' = gP&lL,, 

v' = vp3ur,, 

qkZ = &naT',4, qk6/ = qx21aT',4, 
where u' and v' are the components of the velocity parallel to x' and y' respectively, p' 
is the density, p' the pressure, ,u' the viscosity, ,ii' = p' + with ,uk the bulk viscosity, 
T' the temperature, h' the enthalpy, k' the thermal conductivity, qkJ and qk,, the 
radiant fluxes in the x' and y' directions respectively, 01' is the absorption coefficient, 

2-2 
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r is the Stefan-Boltzmann constant and the subscript co refers to  the free-stream 
conditions. 

Introducing the non-dimensional variables defined above into the basic equations 
and the boundary conditions we get: 

with u(Z, 0) = v(Z, 0) = 0, u(3, co) = u(0, g) = 1,  

~ ( 0 , g )  = v(Z,CO) = 0, T(Z,O) = l / A ,  T(Z,CO) = T(0 ,J)  = I ,  ( 2 g )  

4&(0,9) = gRz(2, a) = ?Rx(Z:,  0) = 0, 

gny(O,y) = P & m )  = 0, 

Px,(F, 0) = %?x, ( 2 h )  

where A = TL/T&, and the subscript W refers to the plate surface. 
The following non- dimenzional parameters appear in the above system of equations: 

For an ideal gas and Mach number of order unity, A,, A, and A, are all of order 
unity and will not enter into any further discussions on the asymptotics. N is seen to 
be a Reynolds number based on hphm as the characteristic length. 

For the present problem, N can also be thought of as a ratio of the two internal 
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length scales of the problem. (This follows from the kinetic theory.) Bo, the Boltzmann 
number, represents the ratio of a reference convective enthalpy flux and a reference 
radiative enthalpy flux, and thus determines the relative importance of the processes 
of convection and radiation in a given situation. It is easy to  show that the different 
dimensionless parameters employed in the literature can all be expressed in terms 
of N ,  Bo and the conventional convective heat transfer parameters (Venkateshan 
1977). 

The choice of the asymptotics in terms of N and Bo is guided by the high tempera- 
ture property calculations presented for air by Sibulkin & Dennar (1972) and Ven- 
kateshan & Krislina Prasad (1975), for CO,, H,O and NH, by Cess (1966)) and for 
CO, by Ozisik (1973). From these it is concluded that the asymptotics corresponding 
to N B 1 and arbitrary Bo would be of engineering interest. The authors consider all 
other possible asymptotics for the problem elsewhere (Venkateshan & Krishna Prasad 
1973). 

2 .2 .  Asymptotic analysis for N -+ 03 

We adopt the formal approach first developed by Kruskal (1963) and later used by 
Solan & Cohen (1967a, b )  for the asymptotic analysis. The method is particularly 
convenient for problems where multiple parameters are involved in the asymptotic 
analysis. The method is called by Kruskal ‘the principle of maximal complication’ 
or ‘the principle of minimal simplifications ’. The procedure is a systematic means by 
which asymptotic forms of the governing equations can be constructed without losing 
any essential physical information in the problem. I n  practice, it reduces to the 
dctermination of the scaling parameters P1, PZ and p3. 

We first note, from the process of normalization, that  the measure of each term in 
the equations ( 2 a )  to ( 2 f )  is given by the coefficient of the derivatives concerned. 
From this, it follows that the equation of continuity will be preserved if 

Using this relation and grouping terms of the same measure, the following ordering 
relations result for the momentum and energy equations : 

1 P1 

NPl NPi:’ 
x momentum+ 1: -: - 

P:. 1 PI 
pj. Np,: Np,’ y momentum - 1 : 

where f1 (P1)  and f2(P2) are functions to  be determined later. 
Before proceeding further, it might be worth associating physical meanings with each 

of the above terms. The first term in each of the equations represents the convective 
terms; l/NP,, the diffusion and dissipative effects in the streamwise direction; 
PI/NP$, the same effects as above, but in the normal direction; /3;//3; turns out to be 
the pressure gradient term in the normal direction; P V N P f  represents the dissipative 
effects due t o  the gradient of v in the streamwise direction; the terms involving Bo 
determine the radiative effects. Before turning to the actual asymptotic analysis, we 
will investigate the nature of the functionsf,(@,) and f2(/3,). 
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For PI < 1 and Pz < 1, dividing by PI, ( 2 e )  and ( 2  f )  reduce to 

The last part of the equation follows from the normalization procedure. Equation 
(5) is the emission dominant or the optically thin limit. Thus the radiation terms in 
the energy equation are scaled as PJBo. However, there are two terms, the ratio of 

requiring Pl 9 PZ for one-dimensionality of the radiation field. 
For PI p 1 and PZ p 1,  with the same operations as before, we get 

(7) 
- 4 1 aT4 - 4 1 aT4 

and f l (P1)  = W?, f Z ( P 2 )  = w;. (8) 

qRx = -3poIzz9 qRv= =&-@, 

Equation (8) is the diffusion approximation for the radiation. It is easy to see from 
(8) that the same criterion for one-dimensionality of the radiation field is obtained in 
this limit as well. The above results may be summarized by 

fi(P1) = min (1, Pi2), 

f Z ( P 2 )  = min (1 ,  PZ”. 
( 9 )  

(10) 

Other possible limits for the problem (Pl < 1,  PZ $ 1 and PI $ 1,  PZ < I )  do not 
yield any new physical information. The same limiting forms as scales ( 9 )  and (10) 
are obtained by using the exact equation of transfer (see Solan & Cohen 1967a), thus 
proving that the use of the differential approximation does not invalidate the generality 
of the asymptotic analysis presented here. 

We now return to the relations (4a )  to (4c) .  A set of 24 order equalities are generated 
by equating every possible pair of terms. Many of them are repetitive and the following 
is a list of independent equalities generated by the procedure : 

A .  NP, = 1 , t  

B.  NP; = P I ,  

c. P I  =Pz, 
D. N$: = P;, 
E.  Pl = Bo, 
F .  PI = Bo, 

G .  NP? = Ro, 
H .  N&=Bo,  

I .  NP; = Bo, 

J .  NP% = Bo, 

K .  NP? = PiBo, 
L. NP,4 = PgBo, 

t These equalities should be read as: NP, is of order unity; PI < 1 implies PI is very much 
smaller than unity, etc. 
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Optically thick 

.Y radiation 

A 

s direction boundary conditions 

FIGURE 1. Ordering scher-e of the compIete system of equations. ---, dominant equalities; 
- . -. - , second-order y radiation effects; ---, z radiation effects. 

In the above, certain repetitive equalities arising in connexion with radiative terms 
have been included for the sake of clarity in further discussion. 

Before proceeding further, it is necessary to specify the range of the Boltzmann 
number to be considered. In agreement with Solan & Cohen we choose Bo 3 N-1 

since the problem cannot be treated by the continuum description for Bo < N-1. 

With the case Bo B N treated elsewhere (Venkateshan & Krishna Prasad 1973) we 
chose the range N-' < Bo Q N for the present treatment. 

Having chosen the range of Bo, each of the relations (1 1) can be most conveniently 
plotted as a line on a logN/?, - log, p2 graph. Figure 1 shows such a plot for Bo 6 1. 
(Similar plots can be prepared for Bo = O(1) and Bo 9 1.)  Each line in the plot can 
be associated with a physical meaning by tracing its genesis to the original equations. 
We consider two examples to illustrate this. The order equality NP, = 1 is represented 
by line A in the figure. In the limit N + a, the diffusion effects in the y direction 
dominate those in the x direction in the region above line A .  The order equality 
fl = Bo in the half-plane pZ < 1 is represented by the line F .  On this line convection 
and radiation effects are of the same order of magnitude. In the region above the line, 
convection effects are of a lower order of magnitude and can be ignored to the leading 
order. In the region below this line, the reverse situation prevails. These ideas can 
be utilized to simplify the governing equations for each of these regions. 

It can be easily seen that the lines A ,  B,  C and D correspond to the conventional 
compressible laminar boundary-layer problem. The boundary-layer simplification is 
valid everywhere along the line B (above line A )  except in the vicinity of the point of 
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Region a Region g Region h Region j 

P1 N-1 Bo Bo Bo-l 
P* N-1 W I N ) $  Bo Bo-1 

2' A;,, m w Bo-lA;, 
Y' $a,,, m (Bo /N)a  BOG m Bo-lA$ 

7 N-1 ( B O N ) ~  Bo Bo-l 

Physical Molecular mean Optically thin Inviscid optically Inviscid optically 

no radiation one-dimensional two-dimensional two-dimensional 
effects radiation radiation radiation 

P s  1 (BON)-* 1 1 

V' urn (BoN)-t u& u:, G 

description free path region ; boundary layer ; thin region ; thick region ; 

Notes : 
(i)  The order symbols have been suppressed for convenience. 

(ii) 7, optical thickness, = p'a'dy'; A;,, and A;h are the molecular and photon mean free 

path respectively. 
(iii) For Bo = 0 ( 1 ) ,  no changes are observed in regions a and g. h and j coalesce into a single 

region. This easily follows from figure 1. No simplification is possible in the equation of transfer 
in this coalesced scaling. 

(iv) For Bo + 1, only regions a and g appear. Again this can be deduced from figure 1 by 
shifting line F to a point above logN PL axis. 

(v) See text for a fuller discussion on the two-dimensionality of the radiation field in regions 
h and j .  

1' 

TABLE 1. Summary of optimal scales: N + 1 and Bo 1. 

intersection of all these lines. One other point worthy of note in this connexion is the 
role played by the line C which represents the order equality PI = P2. Along this line, 
the x direction viscous, conduction and radiation terms are of the same order as the 
corresponding y direction terms. To the left of this line y direction terms dominate 
to  the leading order and the x terms to the right of this line. This means that all dis- 
turbances due to the presence of the body will die down to the far right of this line. 
For the radiationless problem, a scale on line B represents the boundary layer and a 
scale on line C, the inviscid outer flow. 

All other lines in the graph arise from the presence of radiation. These lines inter- 
sect the lines A ,  B, C and D a t  different points. The scalings corresponding to  those 
points of intersection that retain the maximum number of terms while accomplishing 
considerable simplifications in the original set of equations are designated as ' optimal ' 
scalings by Solan & Cohen. (These should not be confused with the 'optimal co- 
ordinates' introduced by Kaplun 1954.) These opt'imal scales are determined by the 
principle of minimal simplification enunciated by Kruskal (1  963). 

The optimal scales for the problem are presented in table 1. The simplifications that 
result from these scales can easily be derived from equations (2a)  t o  (2f) and are not 
reproduced here for the sake of brevity. 
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3. Discussion of asymptotic behaviour for N B 1 

3.1. The optimal regions 

We now discuss the physical and mathematical consequences of the asymptotic 
analysis presented above. It is seen that in the limit N 1 the mean free-path region 
is free of radiative irlteraction to the leading order. This region is defined by the 
complete Navier-Stokes equations and is mathematically difficult to handle. I n  
conformity with the practice followed in this class of problem we assume that it is 
not necessary to solve the flow in this region to  provide boundary conditions for the 
other regions.? The mean free-path region pertains to  the flow prevailing in the vicinity 
of the leading edge and the above assumption amounts t o  saying that the flow in 
the regions downstream is relatively insensitive to the details of flow near the leading 
edge. This region is similar to  the mean free-path, mean free-time region of the radiat- 
ing Rayleigh problem of Solan & Cohen. 

The nature of the radiative interactions downstream of the mean free-path region 
is best understood on the physical plane. For this purpose we note that the 

log, P I  - log, P Z  

plane is a map of the physical plane, which is the region x’ > 0, y’ > 0 above the plate. 
Moving upward along the PI direction from point a in figure 1 is equivalent to  moving 
along the streamwise direction, and similarly moving along the Pz direction corres- 
ponds to movement normal to  the plate surface. Using this idea, it is possible to  con- 
struct a schematic representation (figure 2) of the various regimes of radiative inter- 
action which appear in the present problem. This figure has been constructed for 
N 9 1 and Bo < 1. It is interesting to see that a consequence of increasing Bo is 
simply to shift region g to  the right of its present location. I n  other words, a larger 
region of the flow is free of radiative effects to the leading order. The length scale 
is also marked on the figure. For ready reference, figure 1 is drawn as an inset’, with 
only the dominant lines on it.  

The heavily shaded regions correspond to  the points of intersection g ,  h and j. 
Region g is the conventional boundary layer (also the conventional thermal boundary 
layer since Pr E 1 ) .  Regions h a n d j  are in the inviscid, non-conducting flow field with 
radiation and convection equally important. These are the optimal regions in the 
Kruskal formalism as employed by Solan & Cohen. The order of magnitude of 7, the 
optical thickness, increases monotonically from region a to  j and spans the entire 
range from a non-participating to  an opaque medium. 

We next consider the question of the dimensionality of the radiation field. Region 
a is free from radiation interaction and hence the isothermal condition of the flow far 
from the plate is maintained. Thus there is no component of radiation imposed by this 
region as the gas flows across it. Radiative interaction achieves importance over the 
scale g, the optically thin boundary layer. The radiation field in this region is one- 
dimensional in the y direction. The outer regions h a n d j  are coupled two-fold with g, 
firstly by the transverse velocity generated in the boundary layer, and secondly by 
the radiation from the wall and the boundary layer. It is well known that the trans- 
verse velocity generated by the boundary layer is small and can be ignored to the 

t The justification for such a procedure rasts on the work of Howarth (1951) 011 tho  com- 
pressible Rayleigh problem. 
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Line cilong which ’ 
free-streoiu tloy $,, / 

is restored ,’ 0 

.- 
I 

_t 
__c. 
__t 
_t 

Viscous houtidary 
Frec stream 

Y‘  

FIGURE 2. Schematic representation of variations regions of radiative interactions. 0, con- 
vection + conduction; Q, radiation weak; @, conduction + radiation; @, radiation dominant; 
0, convection + radiation; 8, convection dominant. 

leading order of the approximation. A similar situation prevails as regards the optically 
thin radiation from the boundary layer. Thus, it is only the wall radiation which 
excites the field outside g. 

One feature that distinguishes the two outer regions from the boundary layer is 
that they lie on the line PI = PZ and hence x and y radiation effects must be equally 
important. It thus appears that the one-dimensional approximation for the radiation 
field breaks down in the outer layers. However, from the comments in the last para- 
graph, the only source of radiation important to the leading order is one-dimensional 
radiation from the plate. There is no source of radiation in the 2 direction and scattering 
is not included in the present study. For these reasons, the radiation field in the outer 
layers is also forced to be one-dimensional. These arguments clearly set at  rest the 
doubts expressed by Viskanta (1966) about the validity of the one-dimensional 
approximation for the radiation field. 

From the above discussions the points of similarity between the present work and 
that of Solan & Cohen become obvious. However, differences arise because the radiating 
Rayleigh problem is a naturally one-dimensional problem while the present one is not. 
The one-dimensional feature of the radiation field in the present case is essentially an 
approximation. The second point of difference arises in the outer inviscid flow. In  
the Rayleigh problem, the outer flow behaves like a traditional piston problem. In 
linearized flows it is conventional to draw an analogy between the time variable in 
a piston problem and the x variable in a slightly perturbed two-dimensional flow 
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field. Thus it is a commonly understood fact that  the x variable in a linearized two- 
dimensional inviscid flow acts as a ‘ time-like ’ variable. I n  the presence of radiation, 
this analogy breaks down even for linearized inviscid flows (Vincenti & Kruger 1965). 

The cases Bo = O(1) and Bo 9 1 can be treated together now. The viscous boundary 
layer in both the cases is aga.in optically thin and one-dimensional. Thus, for N + 03, 

Bo finite and Mach number asymptotically inactive, the viscous boundary layer is 
optically thin and the radiation field is one-dimensional to  the leading order. For 
Bo = O(1) only one optimal region appears in the outer inviscid flow. The two regions 
one observes for Bo < 1 coalesce into a single region. The optical thickness is of order 
unity and the full equation of transfer has to be used to describe the radiation field. 
For the one-dimensionality of the outer field the arguments similar to those used for 
Bo < 1 have to be invoked. For Bo > 1, no optimal asymptotic scale in the outer field 
can be defined in the framework of the present analysis. 

3.2. Xome non-optimal regions 

Now we turn our attention to interesting details which can be obtained from figure 2 .  
These pertain to several regions which are not optimal in the sense considered so far. 
Being optically thin regions g and h allow the wall radiation to go unattenuated into 
a region outside it. Sufficient decay of radiation is imperative before we move out into 
region 2 where no radiation is present. There is thus a region corresponding to the 
scales on the horizontal line through g and h (in the inset) where the wall radiation 
decays to the zero value in 2. As can be seen from the sketch, only radiation and con- 
vection balance each other in this region, and the optical thickness is of order unity 
corresponding to the scaling j’. 

While the transition from optically thin conditions of region h to optically thick 
conditions of regionj is taking place in the outer inviscid region, the inner flow under- 
goes an interesting transition from a viscous heat-conducting radiating boundary 
layer to  a non-optimal conduction layer represented by 3. Here conduction and radia- 
tion balance each other and the gas is a t  rest to the leading order. This region is how- 
ever optically thin, requiring the optically thick scales j over which wall radiation 
finds significant attenuation. Corresponding to the conduction layer on 3 the conven- 
tional boundary layer shows no interesting feature, being radiation dominant. As 
opposed t o  the parabolic growth of the boundary layer, the conduction layer is of 
constant thickness. 

The scalings for the regions discussed above are presented in table 2 .  Again, the 
simplified equations are suppressed for brevity. This completes the description of 
the flow field. I n  $4, we demonstrate the use of these regions - both optimal and 
non-optimal - to construct solutions to the problem. 

We would like to emphasize the role of these non-optimal scales in constructing 
solutions by specifically drawing attention to the fact that the location of region g 
along the plate is dependent on the value of Bo. For large Bo, a significant proportion 
of the flow field (left of region g in figure 2 )  is free of radiative interactions to the 
leading order. For constructing solutions to such situations, it seems unnecessarily 
complicated to use optimal scales. In  fact these non-optimal scales have been 
employed to construct solutions for the weakly radiating problem elsewhere 
(Venkateshan 1977) .  
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Region j’ 
A Bo 
A 1 
P 3  1/Bo 
X‘ B O G  m 

Y‘ %h m 
V u&/Bo 
7 1 

Physical Inviscid, non-heat- Optically thin Radiation dominant 
description conducting optically conduction layer optically thin 

finite region boundary layer 

Note: See notes (i) and (ii) under table 1 for symbols. 

TABLE 2. Some non-optimal scales: N + 1 and Bo < 1. 

3.3. Comparison with earlier work 

The model developed by Cess can now be interpreted in terms of the present scalings. 
It can be shown that the conduction radiation interaction parameter NcR can be 
expressed in terms of N and Bo as (1/4Pr) (BoIN) .  The range N-l < Bo < N then 
corresponds to N-2 < I(,, < 1. The Cess limit of NcR --f 0 is in complete agreement 
with the present limit N -+ co and Bo finite. The Cess limit, in common with the pre- 
sent work, physically implies a weakly conducting medium. The main drawback of 
the Cess limit is that it obscures the central role played by the Boltzmann number. 
I n  particular the nature of the outer inviscid region is not clearly delineated. This is 
an obvious consequence of the choice of the conduction-radiation parameter as central 
to the analysis. Cess suggests that the viscous boundary layer is optically thin by 
purely intuitive arguments based on the fact that this layer is physically thin. The 
result comes out naturally from the asymptotic analysis presented here. Furthermore, 
the criterion for the one-dimensionality deduced by Cess, viz. 

assumes an optically thick expression for the radiative flux. This expression may be 
rephrased, using the present variables as Bo2(xL/N.  Bo) % 1, where zL is the Reynolds 
number based on the length L of the plate. It can easily be shown that the term in 
the bracket is &,J leading to Bo2tL > 1. In  the present case tL = O(1) and thus the 
criterion for one-dimensionality reduces to Bo 9 1, corresponding to the case of a 
weakly radiating flow (see Venkateshan 1977). This is a highly restrictive condition 
in the light of the arguments presented earlier. Clearly, the Cess result must be attri- 
buted to  the choice of the optically thick flux expression as the characteristic flux for 
an optically thin gas. 

The criterion for one-dimensionality given by Pai & Tsao can be shown to require 
that tL < 1, for Pr of order unity. As can be seen from the above, this criterion again 
is very restrictive in that it requires negligible interaction between radiation and 
convection. 

t Ci is the spacific heat at  constant pressure. 
$ tL is the Cess variable defined by 5 = 2 a a ~ T ~ z ’ / p ~ C ~ u ~ .  
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4. Solution for N % 1 and Bo < I 
4.1. The governing equations 

The asymptotic analysis presented above indicates that  the momentum equations 
for the problem reduce to the conventional boundary- layer form. Restricting the 
problem to a perfect gas with constant specific heat, viscosity and thermal conductivity 
varying linearly with temperature, and Prandtl number constant a t  unity reduces 
these equations to  the Blasius equation whose solution is known (Schlichting 1960). 
In  the rest of the work, we will concentrate only on the energy equation and the 
equation of transfer. 

To the leading order we can show that the optically thin inviscid region h and also 
the radiation dominant boundary layer g" are isothermal. Hence we ignore these 
regions in the following treatment. I n  common with the Blasius equation the simi- 
larity variable, 

is chosen as one of the independent variables. Noting that radiation convection inter- 
action becomes important over scale PI = O(Bo)  it is logical to choose [ = x / ( B o N )  
as the other independent variable. The equations of energy and radiative transfer 
valid in various asymptotic regions will now be presented. 

Region g : Optically thin viscous heat-conducting boundary layer 

where 
F N *  1 - A 4  
[LBO( A4 ) F = - -  - , 0 = T/A,  

Ec = Eckert number = u z / C $  TL. 
Some explanation regarding these equations and the others which follow are rele- 

vant here. A new temperature 8 has been defined so that the equations have a simpler 
form. A subscript is used only on F since it changes definition from region to region, 
for reasons which will be made clear as and when such changes are made. For example, 
note that a scaling factor ( N / B o ) t  is introduced in the definition F,, so that when 
introduced into the governing energy equation it provides dominant-order inter- 
action between radiation and other modes of energy transfer. 

Another important thing to note with respect to  (12) is the inclusion of the wall 
boundary conditions only. No boundary conditions are specified on the other side. 
These are to  be provided by the asymptotic matching conditions. 
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Region j' : Inviscid non-heat-conducting optically Jinite region 

where yj. = r@(Bo/N)*, Fj, = F(N/Bo[)* (1 - A4)/A4. 

These equations can only be made to satisfy the boundary conditions at  infinity. 
The appearance of the absorption term in the equation of transfer provides an attenua- 
tion of the radiation leaving the wall and the boundary layer to the zero value at  co. 
Being identical to FB in form, Fy directly matches it asymptotically. The use of y j ,  as 
ihdependent variable has the merit of lending a simple form to the energy equation. 
There is a subtler aspect to it in that the physical distance y rather than the similarity 
variable 7 is the proper variable for defining the absorption of radiation leaving the 
wall and the boundary layer. 

Counterparts of the regions g and j' in the large distance limit (6 -+ co) are the con- 
duction layer g', and the optically thick inviscid non-heat-conducting region j. Re- 
membering that x is scaled now by N I B ,  we introduce a new streamwise variable 
El = Bo26 which is of order unity. With the ideas of matching introduced above in 
mind, the equations in these regions may now be written down. 

Region g':  Optically thin conduction layer; no flow to dominant order 

where r0, = r /Bo ,  Fgr = F/Bo(N/Bo&)*. ( 1  - A4)/A4. 

Region j: Optically thick inviscid non-heat conducting region 

ae F~ 
a& 2 ' 
_ -  _ -  

where 
F N4 
Bo Bo El yi = T [ ~ ( B o / N ) * ,  Fi = - - (1  - A4)/A4. 

Again, the wall boundary conditions are satisfied by (14) and the boundary con- 
ditions at  00 by (15). The choice of yi as one of the independent variables in region j 
is natural. 



Radiative interactions in boundary layers 47 

Non-dimensionalizing the conductive wall heat flux with respect to a(T$ - T:) we 
have 

Using the wall boundary condition on the equation of transfer the radiant part of 
the wall heat flux is written as 

where x = 3e/(2 - e) with e the wall emissivity. 

4.2. Solution : linear radiation 

The present treatment of linear radiation has two objectives. We first demonstrate 
that  the concept of radiation slip leads to the same solutionsf as the more involved - 
but more commonly employed - matching procedure. In  appendix 1 this equivalence 
is established for the nonlinear case as well. Secondly, we develop approximate 
methods of solution for the governing equations - methods we shall later extend 
to the nonlinear problem. Owing to pressure of space, we shall only be presenting a 
few highlights of the analysis skipping all the details which can be obtained from 
Venkateshan (1977) .  

The governing equations for the linear problem can be derived from equations (12)  
to  (15) by using the following definitions: 

A = l + 8 ’ ,  t 9 = 1 + 6  withaand S ‘ < l ;  

A4 21 1 +4S’, O4 _N 1 +46; 

0, = @-;)/(l-;) 21 1 + a / s l .  

Physically these definitions imply that Ec < 1 (negligible dissipation) and A N 1 
(near isothermal condition). 

It is straightforward, though laborious, to construct exact solutions to  these 
equations by the application of Laplace transforms. The solutions for the regions g 
and j’ in the transformed plane are given below: 

Outer layer (Region j’) : 
1 3s t 

L(0,) = ; +fyo(s) exp - 2 - ( ( s + 1 6 )  yf)7 

S 3s 
= --fyo(s) 2 exp (- 2 (-)‘yj,). s + 1 6  

Boundary layer (Region 9)  : 
A solution in power series of (Bo/N)* is sought for the equations in this region. 

Though we would be interested in the dominant-order solutions only, matching re- 
quires a knowledge of the second term in the expansion. The coefficients for the tem- 
perature expansion satisfy equations of the form 

t Of course, this is true only for lsading-order approximations and can not bo extended 
higher-order approximations (sea Venkateshan 1977). 
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F@ = f Q O ( ' 3  + q 7 0  

q1 = f&) + xr@. fgo( t )  + q 7 1 .  

Matching these two sets of solutions in the transformed plane yields the functions 
fyo andfuo: 

ffO(S) = - 
(17) 

- 16(3*) 

S&((X(S + 16)* + 2(3*)s*)' L(fQo) = 

Equations (17) could also have been derived by the application of the radiation 
slip boundary condition to the outer-layer equation of transfer. This boundary 
condition is (Sparrow & Cess 1966) 

(18) 
a 

ayi. 
- [ ~ f - 8 6 ' J l ~ p o  = x [ ~ y - 8 ~ ~ ] l y j , ~ o .  

Inversion of the transforms (17) is tedious and we will be satisfied here with 
approximations for large s (small t) and small s (large g). We shall write down only 
the solutions for the temperature a t  the edge of the boundary layer for the case of a 
black wall (x = 3): 

811a,=o N (1-7.424g+43.47t2- 191g3+663a9t4- ...) (g small), (19) 

The fact that we are able to provide solutions for small and large 6 as above suggests 
an approximate method of obtaining these solutions. The starting point for such a 
solution would obviously be in the neighbourhood of e = 0 for the outer layer in 
which we expect only a slight departure from the isothermal condition of the free 
stream. In  this region, the emission term is absent from the equation of transfer and 
leads to the so-called Raizer limit (Raizer 1957). The solution of such an equation 
when introduced into the energy equation leads to a departure from the isothermal 
condition. This in turn provides a non-homogeneous emission term in the equation of 
transfer. The process can be iterated to obtain the exact solution. 

We formalize the above procedure by seeking a series solution to the linearized equa- 
tions in region j': 

n=O 

Various approximations to the solution can be constructed by truncating the series 
to various orders. We shall not reproduce these approximations here (but later indi- 
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cate some results graphically to give an idea about the usefulness ofthe approximation), 
but only give the exact slip temperature obtained by the procedure : 

1 16x 1 1 
L(el)l,r=o = i -x+  ~ ( 3 4 )  S(S + 16) 16( 34) 

[‘-(x+2(34)) (s+I6)H(s) 

(23 )  
(8s + 16) (4/s + 16) (4/s + 16) 

1- 1- 1- 
where H ( s )  = 1- 

= (S/S + 16)t. 

I n  the above we have used the standard notation of the continued fraction. The last 
part of the equations follows from theorems on continued fractions (Smith 1957) 
and is strictly valid for s 9 1. We have again used Laplace transforms and the wall 
slip boundary condition [equation ( 1 7 ) ] .  Equation ( 2 3 )  is of course t,he same as the 
one that was obtained earlier by the exact procedure. 

The equations in the boundary layer are of the same form mentioned earlier and 
will not be repeated here. It is a partial differential equation which can be solved by 
the local similarity approximation (see appendix B for justification). The approxima- 
tion leads to a two-point boundary-value problem to be solved numerically. 

Turning now to the regions g‘ a n d j ,  we note that they both have the form of the 
simple heat conduction equation. The slip boundary condition has now the form 

The solutions can again be obtained very simply by Laplace transforms and are: 
Slip temperature: 

( 2 5 )  
2 X L  ell,=, = exp (q) erfc (4). 

We end this section by presenting heat flux results obtained by subst,itut,ing the rele- 
vant quantities into (16). Small 5 boundary layer: 

where 

4 .3 .  Xolution: nonlinear radiation 

We first present the approximate solution obtained by extending the development 
in the previous section. Only the first approximation results have been calculated. 
We also obtain an exact numerical solution which serves as a check against the 
approximate solution and also provides a solution for 5 = O(1). 
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As in the previous section, we start with the solution in region j’ [equation (13)]. 
We use the radiation slip method and the slip boundary condition is expressed for 

In  analogy with the expansions (21), we seek a solution of the form 

c o r n  

m = l  n=O 
0 = 1 + amn(C) yTexp ( -2(34)rnyjp). (29) 

(Note that for linear radiation we do not have a double series.) By first approximation, 
we mean [OJl N l+@,exp(-2(3~)yj . )+0,exp(-4(3~)yy)  

+@30exp (-6(34)yj.)+@40exp(-8(3*)yj.). (30) 

Introducing these into the equation of transfer, we can obtain an explicit solution as 
follows: 

4. = ( ffo + 8010) exp ( - 2( 33) yf) + 32( 34) O,, yj. exp ( - 2( 34) yY) 

-640?,exp( - 4 ( 3 9 ) y Y ) - 3 6 ~ ~ , e x p ( - 6 ( 3 ~ ) y j , ) - ~ ~ ~ - ! ~ , e x p ( - 8 ( 3 ~ ) y j ~ ) .  (31) 

fjto is determined by the slip boundary condition as 

[ -8x ( 1 - i )  -8 (5~+6(34)@, ,+  16(~+4(34))@;, x + 2(34 
fro = 

1 

+ 4(x + 6(34)) +&(x + 8(34)) @to]. (32) 

In the above equa,tions, the cross-product terms that arise from taking the fourth 
power of [O], have all been ignored. 

Using (31) and (32) in the energy equation, the following equations result: 

- 1 6 ( ~ + 3 ~ ) @ , , + 8 ( ~ + 4 ( 3 ~ ) ) 0 ~ ~  

+ 2(x + 6(31)) O:, + &(x + 8(34)) @ t 0 ] / ( x  + 2(3*)); 

All these equations have zero initial conditions. These equations of course need a 
numerical solution, which will lead to the temperature at  the edge of the boundary 
layer. 

A completely numerical solution for the equations in region j‘ have been obtained 
by the Crank-Nicholson scheme (Ralston 1965). The convergence of the implicit 
scheme is accelerated by an iteration scheme using quasi-linearization (Roberts & 
Shipman 1972). The linear tridiagonal matrix that results from the above pro- 
cedure is solved by the Thomas algorithm (Ralston 1965). For every iteration on this 
system of equations, an iteration is performed on the slip boundary condition, again 
using quasi-linearization. 
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In  the boundary layer [equation (12)] the equation of transfer can be directly inte- 

(34) 
grated to yield 

where fgo is obtained by matching with the outer solution as 

Fg + so4 = fg,(n, 

These when substituted into the energy equation lead to the following partial dif- 
ferential equation which is solved by the Iocal similarity approximation : 

(36) 
1 
A 

0(& 0) = - and 0(5,7 --f 00) = O),,,,. 

To round off this treatment of the nonlinear case, we present some salient features 
of the solutions in regions j and 9'. Equations (15a)  and (15b) are combined to yield 

ao a 2 0 4  

a t  ayg 2 

3- =- (37) 

with the slip boundary condition 

and the condition at  infinity 0 1 uj+m = 1. (38) 

(39) 

The energy equation, after multiplying by 2(80/87,.) can be integrated once resulting 

In  the conduction layer, the equation of transfer is readily integrated to yield 

FQ, = fg; - SO4. 

in 
0 5  (5)' = - (0.8821 Ec + 4&fgb) 0 + 3 2 5 , ~  +fg;. 

fg; is determined by the condition (aO/aqg,) -+ 0 as r , ~ ~ ,  3 00 while fg6 is obtained by 
matching with the solution of equation of transfer [equation (15b)l. These result in 

and 

Equation (40) has the initial condition O(El,O) = l / A .  In  contrast with the h e a r  
problem, the temperature field in the conduction layer is non-similar. 

5. Results and discussion 
We present here a few results to demonstrate the physical aspects of the radiation 

interaction and to allow certain comparisons with some earlier work to establish the 
validity of the procedures adopted in this work. The two-point boundary-value prob- 
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FIGURE 3. Slip temperature in the boundary-layer region. ---, first approximation; 

---, fourth approximation; -.-.- , Cess solution. A - 1. x = 3. 

lems in the boundary layer have been solved by the Gill method (Ralston & Wilf 
1960). For the nonlinear equation quasi-linearization is resorted to  a t  each iteration 
step. 

5.1. Linear radiation 
Figiire 3 depicts the wall slip temperature in the boundary layer region g. For the 
range of 5 considered, the first approximation [n = 1 in equation (21)] is a very good 
description being very close to the fourth approximation, which is indistinguishable 
from the exact solution [equation (1 9)]. The comparison of the present solution with 
those of Cess (1966)t and Taitel (1969) (these two solutions coincide with one an- 
other) shows that the present iesults slightly overestimate the wall slip. I n  the con- 
duction layer, all the results (figure 4) - the result of equation (20), the optically thick 
result [equation (26)], the Cess and Taitel results - coincide with one another for 
6 > 1. These demonstrate that the differential approximation provides an adequate 
description of the radiation field for the entire range of optical thicknesses for the 
present problem. 

The temperature profiles in the boundary layer for different values of 6 are pre- 
sented in figure 5 .  As 6 increases, there is an increase in the wall temperature gradient 
with a general flattening of the profile in the outer regions, thus anticipating the 
presence of the conduction layer for large values of [. This clearly shows that as we 
proceed downstream along the plate, the radiation process begins to  dominate the 
convective process, a fact that was earlier alluded to in the asymptotic analysis. The 
similarity temperature profile in the conduction layer is shown in figure 6. 

Figures 7 and 8 present heat flux results in the boundary-layer region and the 

t Cess uses an exponential kernel soliltion by the following approximations: 

E1(7) N 2 cxp ( -  27), E2(7) - exp ( -  27). 



Ra,diative interactions i n  boundary layers 53 

1 I 
0.0 1 0.10 1 .0 10 

r; 
FIGURE 4. Slip temperature in the conduction-layer region. --. solution of expression (25); 

_ _ -  , ‘exact’ solution in inverse powers of ( k ;  -.-.- Coss solution. A N 1 .  x = 3. 
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FIGURE 5 .  Boundary-layer temperature profile development. 
--- , no radiation; --, with radiation. A N 1. x = 3. 

conduction layer respectively. The normalization employed makes the conductive 
and radiative wall heat fluxes of the same order of magnitude. We shall make some 
comments on the actual values a t  a later stage. An examination of these results indi- 
cates that ( a )  the radiative interaction enhances the conductive heat flux by as much 
as 80% when compared with the non-interaction result; and ( b )  there is a marked 
reduction in the radiative flux with increasing t. 
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FIUURE 6. Conduction-layer temperature profile. A - 1. x = 3. 

5.2. Nonlinear results 
The parameters A and Ec enter into the consideration of the nonlinear problem. I n  
particular, we will treat the cases of A < 1 (hot wall) and A > 1 (cold wall) separately. 

Figure 9 depicts the wall slip temperature for a cold wall calculated by various 
methods - the approximate method, the finite difference solution to the full equation 
of transfer, the optically thick outer equation and a linearized outer field solution for 
small 6. The results show that the approximate sohitZion agrees with the numerical 

FIGURE 7. Wall hsat flux in the boundary-layer region. 
-- - , no interaction. A N 1. x = 3. 
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FIGURE 8. Wall heat flux in the conduction-layer region. 

--- , no interaction. A N 1.  ,y = 3. 
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FIGURE 9. Slip temperature comparisons. Cold wall. A = 5. x = 3. a, complete equation of 
transfer (exact); b, small E; approximate solution; c, optically thick solution; d, linearized 
radiation. 

solution to within about 5 yo up to 6 = 0.3. The linearized outer field solution is itself 
an excellent approximation up to 5 = 0.1. The latter is not surprising if we note that 
in the neighbourhood of 6 = 0, the departure from the isothermal condition in the 
outer field is very slight and linearization is possible under such conditions. In the 
conduction-layer region both the exact a.nd the optically thick result coincide. The 

Radiative interactions in boundary layers 
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FIGURE 10. Radiant wall heat flux. Cold wall. A = 5 .  x = 3. a, complete equation 
of transfer (exact) ; b ,  small E approximate solution; c,  optically thick solution. 

exact solution, apart from validating the approximate solution, bridges the gap 
between the small 5 and large 5 solutions. 

For the conditions of figure 9, the radiative wall heat flux is plotted in figure 10. 
It is t o  be noted that this flux can be deduced from the outer solution. The flux re- 
sults from the approximate solution agree well with the exact solution up to about 
5 = 0-5 and in the conduction-layer region the agreement of the optically thick solu- 
tion with the exact solution is very good. 

I n  figure 11 we show plots of slip temperature and radiant heat flux for a hot wall 
(A = 0.5). I n  contrast with the cold wall solution where slow cooling is observed, there 
is a marked heating of the gas a t  smaller values of 5. 

We now turn to  the boundary-layer temperature profiles. I n  general, the pattern 
of behaviour is similar to the one we observed for linear radiation. For a cold wall 
with negligible dissipation figure 12 shows the development of the temperature profile 
in the boundary layer. The non-interacting self-similar solution at  6 = 0 is transformed 
with the inclusion of radiative interaction to the non-similar conduction-layer profile 
at [ = 10. The effect of dissipation ( M  = 2) is to  more than double the wall temperature 
gradient (figure 13). For this Mach number, we observe no temperature overshoot 
when radiation is absent; however, inclusion of radiation results in an overshoot over 
the local slip temperature. For 5 = 0.2 a change in slope of the temperature profile 
occurs at 7 = 1.3. 

At this stage two interesting comparisons are made. Firstly, we compare the pre- 
sent results with weak interaction (Bo > 1) profile obtained by linearizing the tem- 
perature field with respect to the one with no radiation (this work is treated elsewhere, 
Venkateshan 1977). Figure 14 shows that the weak interaction theory provides an 
excellent approximation for the wall temperature gradient for values of 5 as large as 
0.1. This is the counterpart of linearized outer field, where temperature was linearized 
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FIGURE 11. Slip temperature and radiant wall heat flux. Hot wall. A = 0.5. x = 3. 
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FIGURE 12. Boundary-layer temperature profile development. 
--- , no radiation; __ , with radiation. h = 5 .  Ec = 0. jy = 3. 
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FIGURE 13. Boundary-layer temperature profile development. ---, no radiation ; 
-, with radiation. A = 5 .  Ec = 1.6 ( M  = 2). x = 3. 
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FIGURE 14. Boundary-layer temperature profile : comparison of weak and strong interaction 
results. ---, weak interaction; --, strong interaction. A = 5 .  f;  = 0.1, Ec = 0. x = 3. 
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FIGURE 15. Effect of dissipation on boundary-layer temperature profile. 
--- , no dissipation; -, with dissipation. A = 5. = 0.2. x = 3. 
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FIGURE 16. Boundary-layer temperature profiles. Hot wall. A = 0.5. Ec = 0. x = 3. 
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FIGURE 17. Effect of A on boundary-layer temperature profile. 6 = 0.01. Ec = 0. x = 3. 

with respect to the free-stream temperature which showed good agreement with the 
exact solution up to 6 = 0.1. This shows that the linear radiation results have more 
use than one would expect. As an excellent approximation we could use linearized 
outer and inner fields to solve the problem, linearization being carried out as men- 
tioned above. The second comparison is between the temperature profiles with and 
without dissipation. Figure 15 shows that dissipation increases the temperature 
everywhere, including the wall temperature gradient. 

While the nonlinear hot wall results show a large temperature slip, the effect on 
the wall gradient is not as marked (figure 16). This is consistent with our observation 
above that weak and strong interaction theories are equally capable of predicting the 
wall temperature gradient in this range of f .  The profiles of figure 17 reinforce this 
point. For 6 = 0.01 the profiles for a hot wall (A = 0.5), linearized profile (A - 1) and 
the cold wall (A = 5 )  show that though the wall slip goes through a large variation 
(0.04 for A = 5,0.07 for A - 1, and 0.27 for A = 0.5) the temperature gradient remains 
almost constant (0.738 for A = 5, 0.702 for A - 1 and 0.7 for A = 0.5). 

Figure 18 shows the developing conduction-layer profile normalized with respect 
to the local slip value for a cold wall. The figure also includes the similar solution of the 
linearized problem for comparison. Though with respect to ygr, there is a decrease in 
the wall temperature gradient (with increasing &), with respect to 7 it always shows 
an increase (see figure 12). 
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FIGURE 18. Developing conduction-layer profile. ---, linear radiation. A = 5. Eo = 0. x = 3. 
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FIGURE 19. Conductive wall heat flux. ---, no interaction. A = 5 .  x = 3. 

----- 0 

To complete the picture of wall heat transfer, we now present the conductive wall 
heat flux (figure 19). The effect of interaction is seen to enhance the conductive heat 
flux by as much as 80 yo. Though dissipation has a marked influence in the boundary- 
layer region, it has a very minor effect in the conduction layer. This is as it should be 
since the conduction layer strikes a balance between only radiation and conduction. 

We sum up our results by presenting the influence of the Boltzmann number (which 
has a major role according to the asymptotic analysis of $3) on the radiant and con- 
ductive wall heat fluxes. Figure 20 shows the radiant wall heat flux for A = 0.5 (hot 
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FIGURE 20. Effect of the Boltzmann number on radiant wall heat flux. a: = lo5. N = 10'. x = 3. 
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FIGURE 21. Effect of the Boltzmann number on conductive wall heat flux. 
X: = 10'. N = 10'. x = 3. 

wall) and the linearized solution (A N 1). The strong and weak interaction results 
form asymptotic descriptions along the Boltzmann number axis. It is interesting to 
note that  the linear solution is less affected by interaction for large Boltzmann number 
and more affected for small Boltzmann number as compared with the nonlinear solu- 
tion. The conductive wall heat flux (figure 21) changes through several orders of 
magnitude as the linear result is lower than the nonlinear result up to about Bo = 5 
after which both coincide. 

A significant result emerges from a careful study of figures 20 and 21. While we can 
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neglect conductive heat flux altogether at Bo = 0.01, we may not neglect radiative 
heat transfer even a t  Bo = 100 (it does not matter whether we use the linear or non- 
linear result). In  fact at  Bo = 100 conductive heat flux is only 10 % of the radiative 
heat flux. Note that this follows from equation (12) where the radiative flux term is 
multiplied by x/Bo (where x is the Reynolds number) while the coefficient of conduc- 
tive flux is unity. This has an important implication for the solution procedure we 
need to adopt for a practical problem. For the strong interaction problem (the problem 
that is considered in this paper), we need only solve the outer equations with the slip 
boundary condition to obtain the total wall flux to a good approximation. For the 
weak interaction problem, we can solve the energy equation ignoring the radiation 
term in it. This solution can be used to calculate both the radiative and conductive 
heat fluxes. 

6.  Concluding remarks 
A detailed description of radiative interactions in laminar boundary layers by way 

of asymptotic analysis and supporting solutions for large N and small Bo has been 
presented in the preceeding sections. The introduction of what we call non-optimal 
regions is a significant feature of the present work. These regions, although not 
essential in the Kruskal sense for the construction of solutions to the problem, are 
powerful aids in visualizing the physics of the problem. Also, solutions based on such 
regions are more than adequate for many practical problems. 

To sum up the physics of the problem, the outer inviscid region and the wall layer 
behave in distinctly different ways. The outer field starts out with isothermal condi- 
tions near the leading edge, gradually absorbs the radiation leaving the wall and the 
process is described by the Raizer limit corresponding to an absorbing, but non- 
emitting gas (this is one of the non-optimal regions, we mentioned earlier). The 
process in due course induces a temperature non-uniformity so that emission becomes 
important. Par downstream of this region (and of course at large distances from the 
wall, large compared with the photon mean free path) both emission and absorption 
are equally important and the medium acquires an optically thick character. It is to 
be remembered, however, that this optically thick medium is representative of the 
growth of the physical dimensions of the region of temperature non-uniformity in- 
duced by the radiation-convection interaction. Measured in boundary-layer variables, 
these dimensions are very large indeed and as such the temperature non-uniformity 
mentioned above will not result in any significant conductive heat flux. 

The wall layer close to the leading edge is convection dominant. As the flow pro- 
ceeds downstream the effect of radiation gains importance with a consequent in- 
crease in the wall temperature gradient and a general flattening of the temperature 
profile away from the wall. Far downstream, this flattening becomes so predominant 
that in the radiation dominant limit, the viscous boundary layer is isothermal to the 
leading order. However, there is still a region of small optical thickness close to the 
wall where owing to the high temperature gradients, conduction plays a role equally 
important to that of radiation. 

The following interesting observation emerges from the above discussion. In  the 
weak radiation limit the optically thin approximation cannot form a uniform approxi- 
mation to the radiation field, and hence requires an outer field where radiation acts 
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over a distance of the order of a photon mean free path. In the strong radiation limit 
the optically thick approximation cannot form a uniform approximation to the 
radiation field and hence requires a wall layer where the radiation field is optically thin. 

These conclusions lead to a few comparisons. For very small 5 there appears to be 
a formal similarity between the present solution and the modified differential approxi- 
mation result (Olfe 1967; Koch 1972). Emanuel (1968, 1970) shows that the optically 
thick approximation cannot form a uniform description of the radiation field, breaking 
down close to a solid boundary, where a thermal wall layer is observed even in the 
absence of other modes of energy transport. The radiation conduction interaction 
problem of Lick (1963) shows the presence of optically thin conduction boundary 
layers close to the boundaries where the optically thick approximation breaks down. 
These wall layers are similar to  the conduction layer in the present work. 

Appendix A. Equivalence of the radiation slip method and the matched 
asymptotic expansion solution for the nonlinear problem 

Seeking solutions of the form 

0 = @,+(g)%,+ ..., 

Bo 4 
F g = l $ o + ( F )  Fgl+ ..., 

in the boundary layer g, the governing equations (12) yield 

pgo = fgo(5) - 8% 

Fgi  =fgi(l) +X%@ ( f g o ( 8 - S )  -32@i@i, (A 2) 

where the wall boundary conditions have been satisfied. The outer limit of the 
boundary-layer solutions can be written a5 

Asymptotic matching with the outer solution in the region j’ for yip  -+ 0 will require 
that OO]B+m be equal to @lYj.+,, and that a part of @l]q+m match the gradient 

Also noting that 40~0,1,,, matches (a@4/8yj.)Yj,+0, we get 
(a@/2Y.,)I 3 Yj’+O. 

Fgolq-+m wfgo-8@41yj,+o~ 
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Using asymptotic matching of solution for I$ with the outer limits, (A4), and 
noting yj. = r @ ( B o / N ) t ,  we have 

Eliminating &,, between (A 5a)  and ( A  5 b ) ,  we recover the slip boundary condition (see 
Sparrow & Cess 1966) 

Appendix B. A note on the local similarity assumption 
The approximate method of local similarity has been used in hypersonic flow theory 

(Moore 1964), linearized radiating boundary-layer flow (Cess 1966), and buoyancy- 
induced flows (Nagendra 1971). The approximation simply expresses that, under 
certain conditions, the boundary layer is relatively insensitive to streamwise pressure 
gradient and temperature gradients. We carry out below a simple order of magnitude 
analysis to show that the local similarity approximation can be used advantageously 
in the present problem. 

Expressing the derivatives concerned in terms of (&q) we have 

- ----- 
az B ~ N  at i x a y  

The following are the measures in the boundary layer: (i) y = O( i),  (ii) 2 = O(BoN) 9 1, 
and (iii) ao/ay has a maximum value of order unity. When these are introduced into 
(B i),  we obtain 

Unless Bo - N-1, the above expression will always be very much larger than unity 
and the temperature variation in the x direction can be handled parametrically. The 
case Bo N N-l  has been excluded from the scope of the present study since the con- 
tinuum approximation itself might become doubtful (see § 2). 
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